8 Visualizar riesgo

8.1 Riskr

FROM: https://cran.r-project.org/web/packages/riskyr/vignettes/E_riskyr_primer.html

if (!require('riskyr')) install.packages('riskyr'); library('riskyr')

# Create a customized scenario: 
my.scenario <- riskyr(scen_lbl = "Identifying reoffenders", 
                      popu_lbl = "prison inmates", 
                      cond_lbl = "reoffending",
                      cond_true_lbl = "offends again", cond_false_lbl = "does not offend again",
                      dec_lbl = "test result",
                      dec_pos_lbl = "predict to\nreoffend", dec_neg_lbl = "predict to\nnot reoffend",
                      hi_lbl = "reoffender found", mi_lbl = "reoffender missed",
                      fa_lbl = "false accusation", cr_lbl = "correct release",
                      prev = .45,  # prevalence of being a reoffender. 
                      sens = .98,  # p( will reoffend | offends again )
                      spec = .46,  # p( will not reoffend | does not offend again )
                      fart =  NA,  # p( will reoffend | does not offend gain )
                      N = 753,     # population size
                      scen_src = "(a ficticious example)")


my.scenario <- scenarios$n6

summary(my.scenario)
## Scenario:  Mammography (prob) 
## 
## Condition:  Breast cancer 
## Decision:  Screening 
## Population:  Women (age 40)  
## N =  1000 
## Source:  Hoffrage et al. (2015), p. 3 
## 
## Probabilities:
## 
##  Essential probabilities:
##  prev  sens  mirt  spec  fart 
## 0.010 0.800 0.200 0.904 0.096 
## 
##  Other probabilities:
##  ppod   PPV   NPV   FDR   FOR   acc 
## 0.103 0.078 0.998 0.922 0.002 0.903 
## 
## Frequencies:
## 
##  by conditions:
##  cond_true cond_false 
##         10        990 
## 
##  by decision:
## dec_pos dec_neg 
##     103     897 
## 
##  by correspondence (of decision to condition):
## dec_cor dec_err 
##     903      97 
## 
##  4 essential (SDT) frequencies:
##  hi  mi  fa  cr 
##   8   2  95 895 
## 
## Accuracy:
## 
##  acc:
## 0.90296
plot(my.scenario, plot.type = "icons")

plot(my.scenario, plot.type = "tree", by = "dc")  # plot tree diagram (splitting N by decision)

plot(my.scenario, plot.type = "curve")  # plot default curve [what = c("prev", "PPV", "NPV")]:

if (!require('riskyr')) install.packages('riskyr'); library('riskyr')

# Use a predefined scenario
my.scenario <- scenarios$n6

summary(my.scenario)
## Scenario:  Mammography (prob) 
## 
## Condition:  Breast cancer 
## Decision:  Screening 
## Population:  Women (age 40)  
## N =  1000 
## Source:  Hoffrage et al. (2015), p. 3 
## 
## Probabilities:
## 
##  Essential probabilities:
##  prev  sens  mirt  spec  fart 
## 0.010 0.800 0.200 0.904 0.096 
## 
##  Other probabilities:
##  ppod   PPV   NPV   FDR   FOR   acc 
## 0.103 0.078 0.998 0.922 0.002 0.903 
## 
## Frequencies:
## 
##  by conditions:
##  cond_true cond_false 
##         10        990 
## 
##  by decision:
## dec_pos dec_neg 
##     103     897 
## 
##  by correspondence (of decision to condition):
## dec_cor dec_err 
##     903      97 
## 
##  4 essential (SDT) frequencies:
##  hi  mi  fa  cr 
##   8   2  95 895 
## 
## Accuracy:
## 
##  acc:
## 0.90296
plot(my.scenario, plot.type = "icons")

plot(my.scenario, plot.type = "tree", by = "dc")  # plot tree diagram (splitting N by decision)

plot(my.scenario, plot.type = "curve")  # plot default curve [what = c("prev", "PPV", "NPV")]:

plot(my.scenario, plot.type = "fnet", area = "sq")  # network diagram (with numeric probability labels):

plot(my.scenario, plot.type = "curve", what = "all")  # plot "all" available curves: